
Journal of Computational Physics 229 (2010) 3675–3690
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
The Shortley–Weller embedded finite-difference method for the 3D
Poisson equation with mixed boundary conditions

Z. Jomaa, C. Macaskill *

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
a r t i c l e i n f o

Article history:
Received 28 October 2008
Received in revised form 12 January 2010
Accepted 19 January 2010
Available online 25 January 2010

Keywords:
Finite differences
Mixed boundary conditions
Poisson equation
Embedding
Irregular boundaries
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.01.021

* Corresponding author.
E-mail address: c.macaskill@maths.usyd.edu.au (
a b s t r a c t

This paper describes a method for the solution of the 3D Poisson equation, subject to mixed
boundary conditions, on an irregularly shaped domain. A finite difference method is used,
with the domain embedded in a rectangular grid. Quadratic treatment of the boundary
conditions is shown to be necessary to obtain uniform error of OðD2Þ. This contrasts with
the Dirichlet case where both quadratic and linear treatments give OðD2Þ error, although
the coefficient of error may be much larger for the linear case. Explicit error estimates dem-
onstrating this behaviour are found for the 1D case with similar behaviour found in 2D and
3D numerical examples. Finally, the extension of this approach to the N-dimensional case
is given, where N > 3.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the 3D Poisson equation on an irregular domain with mixed boundary conditions, using an
embedding method on a rectangular Cartesian grid ðx; y; zÞ and employing a quadratic boundary treatment throughout.
For all internal grid points, we use the standard seven-point stencil for the Laplace operator whereas the more general Short-
ley–Weller discretisation [25] is used for grid points adjacent to the boundary. This approach has been explored extensively
for the special case of Dirichlet boundary conditions (see, e.g. [14]). However, for the case of mixed boundary conditions, the
additional difficulty is that the boundary values of the solution are in general unknown, so that the method needs modifi-
cation, as the Shortley–Weller discretisation is written in terms of these unknown values. Consider, for example, the Robin
boundary condition b@w=@nþ w ¼ c, where w is the unknown solution of the Poisson equation and b and c are given con-
stants. Here the boundary condition gives a relation between the normal derivative @w=@n and the boundary value of w at
every point on the boundary. At each grid point adjacent to the boundary, there are in general three such values of w re-
quired, one for each coordinate direction. (There may in fact be only one or two adjacent boundary points, but the method
described here simplifies in an obvious way.) Our approach is to expand w around the grid point adjacent to the boundary
using a quadratic polynomial in x; y and z involving nine unknown constants. Using this expansion first in the three boundary
conditions, secondly at the six interior grid points adjacent to the chosen grid point and finally at the three adjacent bound-
ary points gives a 12 � 12 matrix equation, with unknowns the three boundary values of w and the nine unknown coeffi-
cients in the quadratic expansion. Remarkably enough, this system decouples to the extent that the determination of the
boundary values of w can be found from the inversion of a 3 � 3 system without the need to determine the constants in-
volved in the quadratic expansion (although these can be found if required). This result generalises to N dimensions and fur-
thermore the case N ¼ 2 gives a 2 � 2 system that can be immediately inverted.
. All rights reserved.
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The above approach determines the boundary values of w in terms of the normal derivative @w=@n at the boundary. In
turn the normal derivative at the boundary is expressed in terms of the w values at the internal nodes used by the Short-
ley–Weller discretisation. A method for approximating the normal derivative to OðDÞ was given by Batschelet [2], where
D is the grid spacing. Viswanathan [26] (see also Fox [11]) made use of the tangential derivative of the normal boundary
condition to solve the Poisson equation to OðD2Þ but his formulation was evaluated at non-grid points, therefore needing
further interpolation. In [5] this approach was refined for the Neumann problem, removing the need to use non-grid points,
but retaining the use of the tangential derivative of the normal boundary condition. Furthermore, this formulation was of
positive type (i.e. the coefficient matrix is a modified form of M-matrix (see e.g.[6])) which gives a more complicated formu-
lation than that used here, but has the advantage of guaranteeing convergence for iterative methods. In [4], the authors ex-
tended these ideas to give an OðDÞ and an OðD2Þ finite difference method for the Dirichlet and mixed boundary value
problems for 2D elliptic second-order partial differential equations. A higher order finite difference method of a similar type
was presented by Van Linde [18].

Greenspan [12] was able to avoid use of the tangential derivative of the normal boundary condition, by using a quadratic
Taylor series approximation to obtain an OðD2Þ treatment of the normal derivative involving only internal grid point value
and boundary values. He found that this was preferable to the linear treatment because of the higher accuracy obtainable. In
the 2D case, our approach turns out to be equivalent to that of Greenspan [12], albeit for slightly different boundary condi-
tions, because our treatment of the normal derivative is the same. In essence, our 3D results can be regarded as a general-
isation of his 2D approach.

The work of [8] (2D) and [9] (3D) is a generalisation of that of [17], in that they deal with more general boundary
conditions, but these approaches are only first-order accurate. A numerical method for the variable Poisson equation was
developed in [19] to deal with more general boundary conditions in the presence of interfaces, but this method is again
first-order accurate. Another approach solves the Poisson equation with mixed boundary condition by finding the
particular solution to the non-homogeneous terms [1]. A second-order finite difference method for mixed boundary va-
lue problems is presented in [21,3]. It is not obvious how to extend these last two papers to 3D. Both papers avoid
differentiation of the Neumann data, as does the present scheme, and have the advantage of using a positive type result-
ing matrix, with [3] giving a more compact system matrix. The 2D version of our scheme is much simpler but does not
lead to an M-matrix. More recent papers deal with the mixed boundary conditions using a thin interface approach [22]
or a fictitious domain method with a spread interface approach [23]. Both these last two methods are first-order
accurate.

In this paper, we present a uniformly OðD2Þ 3D algorithm for the Poisson equation, using a quadratic boundary treatment
and show how the 1D and 2D formulations can be obtained as special cases. For comparison purposes we also give the cor-
responding linear boundary treatment [7]. The numerical results confirm the expected OðD2Þ convergence for 2D and 3D
problems with quadratic boundary treatment, while the 2D and 3D algorithms with linear boundary treatment give OðDÞ
convergence. This contrasts with the Dirichlet case, where the overall convergence rate isOðD2Þ for both quadratic and linear
boundary treatments. This follows because although the Dirichlet boundary error is OðD3Þ for the quadratic boundary formu-
lation as againstOðD2Þ for the linear boundary formulation [10,20], internal error isOðD2Þ in both cases. The loss of one order
of convergence at the boundary in the Robin problem for both quadratic and linear boundary treatment can be understood
from the 1D formulation (30) and (36). In Section 2.2, we give the explicit 1D error expression for both quadratic and linear
boundary treatment following [14].

Finally, the general N-dimensional algorithm of OðD2Þ is given, from which the 1D, 2D and 3D algorithms can be derived
as special cases.

2. Mathematical formulation

Here we describe the 3D OðD2Þ algorithm for the solution of the Poisson problem in an irregular domain subject to mixed
boundary conditions. As mentioned in the introduction, in 2D the method described here is essentially equivalent to that of
[12]. In 2D there are also existing algorithms [4,18] which differ from that used here in their use of the tangential derivative
of the mixed boundary condition, or through concentrating on ensuring a positive type matrix [21,3]. In all cases, we use the
nearest neighbour internal grid points only, which provides the simplest OðD2Þ formulation, but gives rise to a non-positive
resulting matrix, which is less satisfactory for iterative techniques.

We consider in detail the 3D formulation of the Poisson equation: the 1D and 2D formulations can then be obtained as
special cases. Furthermore, unlike the Dirichlet case the mixed boundary condition formulation is not additive, in the sense
that there is no immediate extension from 1D to 2D and then to 3D, due to the coupling arising from the normal derivative so
that the 3D problem must be addressed directly. Once the 3D problem is understood, it turns out that the N-dimensional
problem can be treated as a relatively straightforward extension, and so this general result is provided in the Appendix A.

2.1. Three-dimensional case

Consider the three-dimensional mixed boundary value problem for the Poisson equation
r2w ¼ f ðx; y; zÞ on X ð1Þ
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subject to Robin boundary conditions
Fig. 1.
the box
b
@w
@n
þ w ¼ c on @X ð2Þ
where X is the irregular region embedded in a rectangular domain and @X is the boundary of the irregular region. Here b and
c may vary with location on the boundary and b P 0. We take a rectangular grid xi ¼ iDx; yj ¼ jDy and zk ¼ kDz, and for sim-
plicity of description let Dx ¼ Dy ¼ Dz ¼ D. The embedding idea is to take w ¼ 0 for grid points outside X so that in general
there is a jump in w between boundary values and the external grid points. The crucial aspect of the present formulation is
the discretisation of the normal derivative at @X which corresponds to the discretisation of the Poisson equation on internal
points adjacent to the boundary. For points adjacent to the boundary (ði; j; kÞ in Fig. 1), we can use either a quadratic or a
linear treatment. The 3D quadratic (Shortley–Weller) discretisation at ði; j; kÞ is given by
� 2
D2

X3

m¼1

1
ð1� amÞð2� amÞ

wm �
1

1� am

� �
wi;j;k þ

1
2� am

� �
wi�dm1 ;j�dm2 ;k�dm3

� �
¼ fi;j;k; ð3Þ
while the 3D linear (Collatz) discretisation at ði; j; kÞ is given by
1
D2

X3

m¼1

1
ð1� amÞ

wm �
2� am

1� am

� �
wi;j;k þ wi�dm1 ;j�dm2 ;k�dm3

� �
¼ fi;j;k; ð4Þ
where dmi is the Kronecker delta (here and throughout). For all other internal points we use the standard rectangular seven-
point stencil for the Laplace operator.

Consider an internal grid point ði; j; kÞ, where there is an adjacent jump in w in each of the positive x, y and z directions,
respectively (see Fig. 1), so that the distance from ðiþ 1; j; kÞ to the first jump is a1D, the distance from ði; jþ 1; kÞ to the sec-
ond jump is a2D, and the distance from ði; j; kþ 1Þ to the third jump is a3D. We discretise the Poisson equation at ði; j; kÞ sub-
ject to the mixed boundary condition at each of the three jump points:
b1
@w
@n

� �
1
þ w1 ¼ c1; b2

@w
@n

� �
2
þ w2 ¼ c2; b3

@w
@n

� �
3
þ w3 ¼ c3: ð5Þ
Here
@w
@n

� �
r

¼ @w
@x

� �
r

nr1 þ
@w
@y

� �
r

nr2 þ
@w
@z

� �
r

nr3; ð6Þ
where r ¼ 1;2;3; nr ¼ ½nr1;nr2;nr3� is the normal vector at the rth jump boundary point.
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Schematic of a typical ‘corner point’ of the 3D irregular domain. Filled circles represent interior grid points, open circles are exterior grid points, and
es are boundary points.



3678 Z. Jomaa, C. Macaskill / Journal of Computational Physics 229 (2010) 3675–3690
We need the boundary values w1;w2 and w3 to complete the quadratic formulation of Eq. (3). To maintain OðD2Þ accuracy,
we must use a quadratic boundary treatment. Consider the quadratic approximation to the solution of the Poisson equation
in the neighbourhood of the point ði; j; kÞ:
w ¼ wi;j;k þ c1ðx� xiÞ þ c2ðy� yjÞ þ c3ðz� zkÞ þ c4ðx� xiÞðy� yjÞ þ c5ðx� xiÞðz� zkÞ þ c6ðy� yjÞðz� zkÞ
þ c7ðx� xiÞ2 þ c8ðy� yjÞ

2 þ c9ðz� zkÞ2: ð7Þ
To obtain the boundary discretisation of the Poisson equation at ði; j; kÞ we solve the coupled problem of the determina-
tion of the constants cq; q ¼ 1; . . . ;9 and wr ; r ¼ 1;2;3, i.e. 12 independent equations are required.

The first three equations are obtained by applying (7) in the boundary conditions (5) at the three boundary points adja-
cent to ði; j; kÞ. For the first boundary condition we find
w1 þ b1

X3

m¼1

n1mcm þ ð1� a1ÞD
X3

m¼2

n1mcmþ2 þ 2n11c7

 !" #
¼ c1 ð8Þ
with similar equations for the other two boundary conditions.
The next six equations are obtained by imposing (7) at the internal grid points adjacent to ði; j; kÞ in the order

ði� 1; j; kÞ; ði; j� 1; kÞ; ði; j; k� 1Þ; ði� 1; j� 1; kÞ; ði� 1; j; k� 1Þ; ði; j� 1; k� 1Þ. We find for node ði� 1; j; kÞ
c1D� c7D
2 ¼ wi;j;k � wi�1;j;k; ð9Þ
with similar equations for nodes ði; j� 1; kÞ and ði; j; k� 1Þ. For node ði� 1; j� 1; kÞ we obtain
Dðc1 þ c2Þ � D2ðc4 þ c7 þ c8Þ ¼ wi;j;k � wi�1;j�1;k; ð10Þ
again with similar equations for nodes ði� 1; j; k� 1Þ and ði; j� 1; k� 1Þ. Finally, at the three boundary points wr we have
wr � ð1� arÞDcr � ð1� arÞ2D2crþ6 ¼ wi;j;k; r ¼ 1;2;3: ð11Þ
Taking in order the quadratic approximations for the three boundary conditions of the form (8), the six interior conditions
(9) and (10) and the three boundary values (11) gives a 12 � 12 system of equations:
I BG DBðI � AÞF3;M 2DBðI � AÞD
0 DI 0 �D2I

0 DKM;3 �D2IM �D2KM;3

I �DðI � AÞ 0 �D2ðI � AÞ2

0
BBBB@

1
CCCCA

w1

w2

w3

c1

c2

c3

c4

c5

c6

c7

c8

c9

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼

c
p1

p2

p3

0
BBB@

1
CCCA; ð12Þ
where I is the 3 � 3 identity matrix, 0 is the 3 � 3 zero matrix, and IM is the 3 � 3 identity matrix in this case, because in
general M ¼ NðN � 1Þ=2, where N is the dimensionality of the problem. We give the extension to N dimensions in the Appen-
dix A. In (12) we have
A ¼
a1 0 0
0 a2 0
0 0 a3

0
B@

1
CA; B ¼

b1 0 0
0 b2 0
0 0 b3

0
B@

1
CA; D ¼

n11 0 0
0 n22 0
0 0 n33

0
B@

1
CA;

F3;M ¼
n12 n13 0
n21 0 n23

0 n31 n32

0
B@

1
CA; G ¼

n11 n12 n13

n21 n22 n23

n31 n32 n33

0
B@

1
CA; KM;3 ¼

1 1 0
1 0 1
0 1 1

0
B@

1
CA; ð13Þ
and
c ¼
c1

c2

c3

0
B@

1
CA; p1 ¼

wi;j;k � wi�1;j;k

wi;j;k � wi;j�1;k

wi;j;k � wi;j;k�1

0
B@

1
CA; p2 ¼

wi;j;k � wi�1;j�1;k

wi;j;k � wi�1;j;k�1

wi;j;k � wi;j�1;k�1

0
B@

1
CA; p3 ¼ wi;j;k

1
1
1

0
B@

1
CA: ð14Þ
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If we view the matrix in (12) as a four by four block matrix we can identify the sequence of row operations that is used to
reduce (12) to (15). In summary we use row 2 of (12) to simplify row 3, then row 4 to simplify row 2. Row 4 is unchanged.
We then use row 3 of (15) to eliminate column 3 of row 1, row 4 of (15) to eliminate column 4 of row 1 and finally row 2 of
(15) to eliminate column 2 of row 1.
I þ E 0 0 0
I �DðI � AÞð2I � AÞ 0 0

0 0 D2IM 0
I �DðI � AÞ 0 �D2ðI � AÞ2

0
BBB@

1
CCCA

w1

w2

w3

c1

c2

c3

c4

c5

c6

c7

c8

c9

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼

p6

p5

p4

p3

0
BBB@

1
CCCA; ð15Þ
where E is a 3 � 3 matrix with entries
Erq ¼
brð1þ 2drqð1� aqÞÞnrq

Dð1� aqÞð2� aqÞ
; r; q ¼ 1;2;3 ð16Þ
with
p4 ¼
wi�1;j�1;k þ wi;j;k � wi�1;j;k � wi;j�1;k

wi�1;j;k�1 þ wi;j;k � wi�1;j;k � wi;j;k�1

wi;j�1;k�1 þ wi;j;k � wi;j�1;k � wi;j;k�1

0
B@

1
CA;

p5 ¼ ðI � AÞ2
wi�1;j;k

wi;j�1;k

wi;j;k�1

0
B@

1
CAþ Að2I � AÞp3;

p6 ¼ cþ 1
D

BðI � AÞð2Dp1 � F3;Mp4Þ þ Ep5:

ð17Þ
Now to obtain wr ; r ¼ 1;2;3 we need to invert the 3 � 3 system of equations
ðI þ EÞ
w1

w2

w3

0
B@

1
CA ¼ p6 ð18Þ
which is done using computer algebra once and for all for any given boundary.
Substituting wr ; r ¼ 1;2;3 in (3) completes the discretisation of the Poisson equation with Robin boundary conditions at

any grid point ði; j; kÞ adjacent to three boundary points, with minor modifications required if, for example, ði; j; kÞ is adjacent
to only one or two boundary points. For example, consider the case where ði; j; kÞ is adjacent to boundary point 1 and bound-
ary point 2 but not boundary point 3. The equation describing the Robin boundary condition at boundary point 3 is no longer
used, and secondly the equation at the boundary point 3 (from (11) with r ¼ 3) is replaced by that for the corresponding
internal point. We no longer have to find the value w at the corresponding boundary point, so reducing the number of un-
knowns by one also, giving rise to a system of 11 equations in 11 unknowns. Similarly for one boundary point only we find a
10 � 10 system.

From (18), or from the general form for N dimensions given in the Appendix A, the 1D and 2D formulations can be written
down directly. For instance, in the 1D case, the matrices and vectors reduce to scalars. Because M ¼ 0; F1;M ; IM and KM;1 are
null and
A ¼ a1; B ¼ b1; D ¼ n11;

c ¼ c1; p1 ¼ wi � wi�1; p3 ¼ wi

ð19Þ
with
E ¼ b1ð3� 2a1Þn11

Dð1� a1Þð2� a1Þ
: ð20Þ
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In the 2D case, we have M ¼ 1 so that IM ¼ 1 and the matrices become
A ¼
a1 0
0 a2

� �
; B ¼

b1 0
0 b2

� �
; D ¼

n11 0
0 n22

� �
;

F2;1 ¼
n12

n21

� �
; G ¼

n11 n12

n21 n22

� �
; K1;2 ¼ 1 1ð Þ;

c ¼
c1

c2

� �
; p1 ¼

wi;j � wi�1;j

wi;j � wi;j�1

 !
; p2 ¼ wi;j � wi�1;j�1

� �
; p3 ¼ wi;j

1
1

� �
ð21Þ
and
p4 ¼ wi;j þ wi�1;j�1 � wi�1;j � wi;j�1

� �
: ð22Þ
The matrix E has elements given by
Erq ¼
brð1þ 2drqð1� aqÞÞnrq

Dð1� aqÞð2� aqÞ
; r; q ¼ 1;2: ð23Þ
Now to obtain wr ; r ¼ 1;2 we need to invert the 2 � 2 system of equations
ðI þ EÞ
w1

w2

� �
¼ p6; ð24Þ
where
p5 ¼ ðI � AÞ2
wi�1;j

wi;j�1

 !
þ Að2I � AÞp3;

p6 ¼ cþ 1
D

BðI � AÞð2Dp1 � F2;1p4Þ þ Ep5:

ð25Þ
In [15], a geometric approach is used that gives the same result as Eq. (24). Eq. (24) also agrees with the result that is
found when the normal derivative @w=@n is determined as in Greenspan [12]. This is expected, as he also used a 2D Taylor
expansion.

For comparison purposes we also give the 3D linear formulation, using the 3D Collatz discretisation as in Eq. (4) with a
linear treatment near the boundary:
w ¼ wi;j;k þ c1ðx� xiÞ þ c2ðy� yjÞ þ c3ðz� zjÞ: ð26Þ
Use of a quadratic treatment like (7) near the boundary is possible but inconsistent, giving rise to a more complicated
formulation, but still with OðDÞ error; this is therefore not pursued further here. Applying (26) to ði; j� 1; kÞ; ði; j; k� 1Þ,
boundary point 1 and the boundary condition at boundary point one gives
1þ b1n11

ð1� a1ÞD

� �
w1 ¼ c1 �

b1

D
� n11

1� a1
þ n12 þ n13

� �
wi;j;k þ

b1

D
n12wi;j�1;k þ

b1

D
n13wi;j;k�1: ð27Þ
w2 and w3 are obtained in similar way. The 1D and 2D linear formulation can be determined directly from Eq. (27).

2.2. 1D error analysis

Consider the 1D Poisson equation d2w=dx2 ¼ f ðxÞ for x 2 ½xL; xR� embedded in the interval ½a; b�, where the uniform grid
spacing D � Dx ¼ ðb� aÞ=g and there are gþ 1 grid points such that a ¼ x0 < xL < x1 < x2 < � � � < xg�2 < xg�1 < xR < xg ¼ b,
with xL � x0 ¼ aLD and xg � xR ¼ aRD. The solution w is set to zero outside ½xL; xR� and in general there are jumps at xL and
xR where Robin boundary conditions are imposed. Here we discuss the 1D error expressions for w satisfying these boundary
conditions, using the same approach as for the Dirichlet case first proposed in [16] and explicitly carried through in [14].

The 1D error n ¼ w� we, where we and w are the exact and approximate solutions, respectively, satisfies
Ln ¼ s; ð28Þ
with L the discrete second derivative operator and s the truncation error, subject to the immersed boundary conditions
�bL
dn
dx

����
x¼xL

þ nL ¼ 0; bR
dn
dx

����
x¼xR

þ nR ¼ 0: ð29Þ
Here bL and bR play the same role as b1 in (19).
We now summarise explicit results for the 1D error n ¼ w� we, defined in Eq. (28) and subject to the boundary conditions

(29). These are found using similar techniques to those employed for the Dirichlet case in [14] Section 2.2.1 and are discussed
more extensively in [15].
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When a quadratic treatment of the boundary conditions is used, we find
ni ¼ D2 i� aL þ
bL

D

� �
Hg�1=2

D
�
Xg�1

j¼2

j� aL þ
bL

D

� �
sj �

Xg�1

j¼iþ1

ði� jÞsj �
ð1� aLÞð2� aLÞDþ bLð3� 2aLÞ

2D
s1

" #

for 1 6 i 6 g� 1 ð30Þ
with
Hg�1=2 ¼ D2
Xg�1

j¼2

j� aL þ
bL

D

� �
sj þ

aRð1� aRÞD� bRð1� 2aRÞ
2D

sg�1 þ
ð1� aLÞð2� aLÞDþ bLð3� 2aLÞ

2D
s1

( )

� ðg� aL � aRÞDþ bL þ bR½ ��1
: ð31Þ
Rewriting as a sum of terms like those in the Dirichlet case and terms proportional to b we find:
ni ¼ D2 ði� aLÞ
Hg�1=2

D
�
Xg�1

j¼iþ1

ði� jÞsj �
Xg�1

j¼2

ðj�aLÞsj �
ð1�aLÞð2� aLÞ

2
s1

" #
þ bLD

Hg�1=2

D
�
Xg�1

j¼2

sj �
ð3� 2aLÞ

2
s1

" #
; ð32Þ
where
Hg�1=2 ¼ D2
Xg�1

j¼2

ðj� aLÞsj þ
aRð1� aRÞ

2
sg�1 þ

ð1� aLÞð2� aLÞ
2

s1

( )
� ½ðg� aL � aRÞDþ bL þ bR�

�1

þ D
Xg�1

j¼2

bLsj þ
bLð3� 2aLÞ

2
s1 �

bRð1� 2aRÞ
2

sg�1

" #
� ðg� aL � aRÞDþ bL þ bR½ ��1

; ð33Þ
and
s1 ¼ �
D
3

aLðwe
1Þ
000 � bLð1� aLÞð2� aLÞD

3 ð1� aLÞð2� aLÞDþ bLð3� 2aLÞ½ � ðw
e
LÞ
000
; ð34Þ

sg�1 ¼
D
3
aRðwe

g�1Þ
000 þ bRð1� aRÞð2� aRÞD

3 ð1� aRÞð2� aRÞDþ bRð3� 2aRÞ½ � ðw
e
RÞ
000
: ð35Þ
In the Dirichlet case (bL ¼ bR ¼ 0), Eqs. (30) and (31) reduce to those of [14], but note that there are two typographical
errors in Eqs. (32) and (33) of [14]: in Eq. (32) the first summation should start from j ¼ 2 and in Eq. (33) HN�1=2 should
be the negative of the value given there.

For the linear boundary treatment by contrast
ni ¼ D
bL þ ði� aLÞD

ðg� aL � aRÞDþ bL þ bR
� 1

� �Xg�1

j¼1

bL þ ðj� aLÞDð Þsj � D
Xg�1

j¼iþ1

ði� jÞsj

" #
for 1 6 i 6 g� 1: ð36Þ
Again the error expression can be rewritten to isolate the terms similar to those found in the Dirichlet case from those
approximately proportional to b as
ni ¼ D2 ði� aLÞD
ðg� aL � aRÞDþ bL þ bR

� 1
� �Xg�1

j¼1

ðj� aLÞsj �
Xg�1

j¼iþ1

ði� jÞsj

" #

þ ðbLDÞ
bL

ðg� aL � aRÞDþ bL þ bR
� 1

� �Xg�1

j¼1

sj for 1 6 i 6 g� 1; ð37Þ
where
s1 ¼
aL

2
ðwe

1Þ
00 � bLð1� aLÞ

2ðbL þ ð1� aLÞDÞ
ðwe

LÞ
00
;

sg�1 ¼
aR

2
ðwe

g�1Þ
00 � bRð1� aRÞ

2ðbR þ ð1� aRÞDxÞ ðw
e
RÞ
00
:

ð38Þ
Explicit forms for the 1D error for both quadratic and linear treatment of the boundary conditions are summarised in Ta-
ble 1 for the special case b ¼ bL ¼ bR. When b ¼ 0 we recover the Dirichlet problem. As is well known, in this case both the
quadratic and linear treatments give OðD2Þ error, but in general the coefficient of error is significantly larger for the linear
case [14], so favouring the quadratic approach. For the more general Robin boundary conditions treated here, where b� D,



Table 1
The order of the error for the two 1D cases: (a) quadratic treatment of boundary jumps and (b) linear treatment of boundary jumps.

(a) Quadratic (b) Linear

s1 ¼ OðDÞ; sg�1 ¼ OðDÞ s1 ¼ Oð1Þ; sg�1 ¼ Oð1Þ
si ¼ OðD2Þ; i ¼ 2; . . . ;g� 2 si ¼ OðD2Þ; i ¼ 2; . . . ;g� 2
Ln ¼ s Ln ¼ s
�b dn

dxþ n ¼ 0 at x ¼ xL and x ¼ xR �b dn
dxþ n ¼ 0 at x ¼ xL and x ¼ xR

n1 ¼ OðD2Þs1 þOðbDÞs1 n1 ¼ OðD2Þs1 þOðbDÞs1

¼ OðD3Þ þ OðbD2Þ ¼ OðD2Þ þ OðbDÞ
ng�1 ¼ OðD3Þ þ OðbD2Þ ng�1 ¼ OðD2Þ þ OðbDÞ
ni ¼ OðD2Þ

P
isi þOðbDÞ

P
si ni ¼ OðD2Þ

P
isi þOðbDÞ

P
si

¼ OðD2Þ þ OðbD2Þ ¼ OðD2Þ þ OðbDÞ
i ¼ 2; . . . ;g� 2 i ¼ 2; . . . ;g� 2
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the issue is more clearcut, because the linear approximation is now uniformly OðbDÞ as opposed to the OðbD2Þ behaviour for
the quadratic case. For the Dirichlet case, the 1D method can be applied dimension by dimension to build up the 2D and 3D
methods, and so the 1D error expressions can be applied to give quantitative estimates of the error in these cases (see [14]
for some 2D examples). For the Robin problem, the higher dimensional methods cannot be built in this way and so the 1D
error estimates are only indicative of the behaviour to be expected. Despite this, the predictions of Table 1 are confirmed in
the 2D and 3D numerical examples given in the next section.

For the 1D Dirichlet problem, the boundary error is OðD2Þ;OðD3Þ and OðD4Þ respectively for the linear boundary treat-
ment, the quadratic boundary treatment and the special case of no boundary jumps i.e. where the boundary coincides or
is aligned with a grid point (see Table 1 of [14]). However, in the Robin case the boundary error dominates the calculation
due to the estimation of the derivative at the boundary points and gives OðbD2Þ and OðbDÞ errors for the quadratic and the
linear boundary treatments, respectively. For the aligned case, quadratic or linear discretisation of the Robin boundary con-
dition can be used and results in OðbD2Þ or OðbDÞ error, respectively. Estimating the derivative at a boundary point involves
error which grows as the boundary point moves further from the point of discretisation, so that, for a given discretisation
step, the aligned case has a larger coefficient of error than a non-aligned case. Consistent with our results, a 1D error anal-
ysis for the Dirichlet case gives OðD2Þ error in the immersed interface method [13] and the explicit-jump immersed inter-
face method [27]. For more general boundary conditions, Ramière [24] finds OðD1=2Þ error in the H1-norm and this is shown
to correspond to OðDÞ in the L2-norm for the Dirichlet case, but for this norm more general conditions were not treated. As
stated in [24] the loss of one order of convergence in the L2-norm is due to the use of a non-conforming mesh (staircase
mesh).

3. Numerical results

In this section, we present results for two 3D problems in the unit sphere using the quadratic or linear boundary treat-
ment described above. In each case, we solved the corresponding matrix problem using the conjugate gradient squared iter-
ation method for sparse matrices as implemented in MATLAB: cgs.m. This was slightly faster for the problems treated here
than the bi-conjugate gradient method (bicg.m) and the generalised minimum residual method (gmres.m), but no difficul-
ties were encountered with any of these approaches. We then go to show two 2D problems in irregular domains and contrast
the effects of using either the quadratic or linear boundary treatment.

3.1. 3D cases

In Fig. 2 we consider the problem of solving the Poisson equation r2w ¼ �3 cosðxþ yþ zÞ on the unit sphere, with Robin
boundary conditions b @w

@n þ w ¼ c, where c is chosen so as to match exactly the left-hand side of the boundary condition. Out-
side the unit sphere we set w ¼ 0. The domain is embedded in a cube of side length 2.5. The three columns are cross-sectional
plots of the absolute error at z ¼ �1:25þ ðjg=4ÞD ¼ �1:25þ 0:625j; j ¼ 1 . . . 3, respectively, with g ¼ 80, where g is the num-
ber of grid intervals in each coordinate direction.

First we show results for the Dirichlet case: row 1 (panels (a), (b) and (c)) corresponds to the quadratic case with b ¼ 0
while in row 2 (panels (d), (e) and (f)) we show the corresponding linear treatment for b ¼ 0. As reported in [14] the linear
treatment, with apparent uniform OðD2Þ error, actually results in significant boundary errors. Similarly rows 3 and 4 give the
quadratic and linear behaviour, respectively, for b ¼ 1. As expected the error is much reduced with the quadratic treatment
as opposed to the linear case and there is no particular tendency for boundary error to dominate, indicating consistency with
the quadratic interior grid point treatment.

For the same problem, Fig. 3 shows the rms and maximum absolute errors as a function of g for g ¼ 10;20;40 and 80.
Panels (a), (b), (c) and (d) correspond to b ¼ 0;0:1;1 and 10, respectively. The OðbD2Þ behaviour for the quadratic boundary
treatment is very clear, with the error decreasing with the square of the number of grid intervals g in each direction and
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Fig. 2. The 3D problem r2w ¼ �3 cosðxþ yþ zÞ, on the interior of the unit sphere, with b @w
@n þ w ¼ c on the boundary of the sphere and w ¼ 0 elsewhere.

Here gD ¼ 2:5;g ¼ 80 and c is chosen to match the left-hand side of the boundary condition. Columns one to three show cross-sectional plots of the
absolute error at z ¼ �1:25þ j g

4 D; j ¼ 1; . . . ;3 ¼ �0:625;0 and 0.6255, respectively. The quadratic boundary treatment is shown in panels (a), (b) and (c) for
b ¼ 0 and in (g), (h) and (i) for b ¼ 1. Similarly, the linear boundary treatment for b ¼ 0 is shown in panels (d), (e) and (f) and for b ¼ 1 in (j), (k) and (l).
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linearly increasing through panels (b), (c) and (d) as b is increased, in agreement with the 1D analysis in Section 2.2, Eq. (30).
We see that the coefficient of error for the Robin case is always significantly greater than for the corresponding Dirichlet
problem. The linear treatment shows OðbDÞ behaviour as in Eq. (36).

In Table 2, we compare the maximum absolute error and the CPU time for both quadratic and linear treatments in the
special case b ¼ 1 using the MATLAB routine cgs.m (including matrix setup time and with no preconditioner). The results
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Fig. 3. For the problem treated in Fig. 2, for the quadratic and linear boundary treatment, panels (a)–(d) show the rms errors (solid lines) and maximum
absolute errors (dash-dotted lines) as a function of g, where gD ¼ 2:5 and b ¼ 0; 0:1;1 and 10, respectively.

Table 2
The maximum absolute error and the CPU time for the 3D casesr2w ¼ �3 cosðxþ yþ zÞ on the unit sphere subject to Robin boundary conditions and b ¼ 1: (a)
quadratic, (b) linear.

g (a) Quadratic (b) Linear

Max jerrorj CPU time Max jerrorj CPU time

10 0.0267 0.033 0.0454 0.0299
20 0.0075 0.29 0.0201 0.205
40 0.002 7.3 0.0092 4.7
80 5.1e�4 471 0.0043 230
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show that for the same number of grid intervals the CPU time needed for the quadratic boundary treatment is approximately
twice as much as that needed for the linear boundary treatment. However, this is not significant once the increased accuracy
of the quadratic method is taken into account. We also used the standard Anb MATLAB command for g ¼ 40, which
automatically invokes the umfpack routines for large sparse matrices: however, we found that this was slower. In fact
the routine failed for larger values of g, partly due to insufficient memory problems.



x−00 l1 0 −1 0 −1 0 −1 0 −x |

=

−  
0
0 l
1

4

10−

3

10−

2

xError|L i n e a r , 0 4 = 1 −−00l5 11 0 −4 1 0 −3 1 0 −2 x

β

=

−00

0

−

4

0

−

3

1−

2

|Error|

F

i

g

.

4

.

T

h

e

3

D

p

r

o

b

l

e

m

r

2

w

º

e

x

p

ð

x

˛

z

fi

c

o

s

y

i

n

t

h

e

i

n

t

e

r

i

o

r

o

f

t

h

e

u

n

i

t

s

p

h

e

r

e

,

s

u

b

j

e

c

t

t

o

b

D

º

2

:

5

,

g

i d e o f t h e b o u n d a r y c o n d i t i o n . C o l u m n s o n e t o t h r e e s h o w c r o s s - s e c t i o n a l p l o t s o f t h e

a

z
º

�




3

1:

2 5 ˛ j

D

;

j

º

1

;.

.

.

;

3º

�




3

0

:

6

2

5

;

0

a

n

d

0

.

6

2

5

,

r

e

s

p

e

c

t

i

v

e

l

y

.

T

h

e

q

u

a

d

r

a

t

i

c

b

o

u

n

d

a

r

y

t

r

e

a

t

m

e

n

t

i

s

s

h

o

w

n

i

n

p

a

n

e

l

s

(

a

)

,

(

b

)

a

n

d

(

c

)

f

o

r

b

º

0

a

n

d

i

n

(

g

)

,

(

h

)

a

n

d

(

i

)

f

o

r

b

º

1

.

S

i

m

i

l

a

r

l

y

,

t

h

e

l

i

n

e

a

r

b

o

u

n

d

a

r

y

t

r

e

a

t

m

e

n

t

f

o

r

b

º

0

i

s

s

h

o

w

n

i

n

p

a

n

e

l

s

(

d

)

,

(

e

)

a

n

d

(

f

)

a

n

d

f

o

r

b

º

1

i

n

(

j

)

,

(

k

)

a

n

d

(

l

)

.

Z

.

J

o

m

a

a

,

C

.

M

a

c

a

s

k

i

l

l

/

J

o

u

r

n

a

l

o

f

C

o

m

p

u

t

a

t

i

o

n

a

l

P

h

y

s

i

c

s

2

2

9

(

2

0

1

0

)

3

6

7

5

Ö

3

6

9

0

3

6

8

1

Figs. 4 and 5 are similar to Figs. 2 and 3, respectively, but for the 3D problem r2w ¼ expðxþ zÞ cos y. The presence of the
exponential function on the right-hand side of the Poisson equation does not appear to affect conclusions about the conver-
gence. Indeed, numerical experiments with a broad range of functions give similar results.
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Fig. 5. For the problem treated in Fig. 4, for the quadratic and linear boundary treatment, panels (a)–(d) show the rms errors (solid lines) and maximum
absolute errors (dash-dotted lines) as a function of g, where gD ¼ 2:5 for b ¼ 0; 0:1;1 and 10, respectively.
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3.2. 2D cases

In Fig. 6 we consider the problem of inverting the Poisson equationr2w ¼ 7r2 cos 3h, subject to b @w
@n þ w ¼ c on the bound-

ary of the six-leafed shape described by r ¼ 0:3þ 0:15 cos 6h. We set w ¼ 0 outside this domain. Here c is chosen to match
the left-hand side of the boundary conditions. The domain is embedded in a square of side length one, with gD ¼ 1 and
g ¼ 100. Panels (a) and (b) show plots of the absolute errors for the quadratic and linear treatments with a Dirichlet bound-
ary condition ðb ¼ 0Þ whereas panels (d) and (e) deal with the corresponding Robin case where b ¼ 1. We plot the rms and
maximum errors for b ¼ 0;0:1;1 and 10 in panels (c), (f), (h) and (i), for g ¼ 40;80;160 and 320 for both the quadratic and
linear boundary treatments. Panel (g) shows the region. Again we see that the quadratic boundary method for the Robin con-
dition (panel (e)) is better than the linear method but that the errors for the Dirichlet case are significantly smaller. The
behaviour is qualitatively similar to the 3D test cases, with the quadratic error scaling likeOðbD2Þ, and the linear error clearly
scaling like OðbDÞ, as suggested by the 1D analysis.

The second 2D example in Fig. 7 is for the caser2w ¼ exðy2 þ 2ð1þ 2xÞ sin yþ 2Þ;gD ¼ 1:7096 and g ¼ 100 with the irreg-
ular domain described by x ¼ 0:613 cos h� 0:27 cos 3h; y ¼ 0:712 sin h� 0:06 sin 3hþ 0:05 sin 7h, where b ¼ 0 for the dashed-
line and b ¼ 1 for the solid line (see panel (g)). The panels correspond to those in Fig. 6 and the behaviour is qualitatively
similar. Panels corresponding to the rms and maximum errors are similar to those in Fig. 6, but the value of b is zero for
the dashed part of the boundary and 0, 0.1, 1 and 10, respectively, for the solid part of the boundary. The rms and maximum
errors again show very similar qualitative behaviour.
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Fig. 6. The 2D problem r2w ¼ 7r2 cos 3h in the interior of the six-leafed shape (see panel (g)) described by r ¼ 0:3þ 0:15 cos 6h, subject to b @w
@n þ w ¼ c on

the boundary and with w ¼ 0 elsewhere. Here c is chosen to match the left-hand side of the boundary condition, gD ¼ 1 and g ¼ 100. The numerical error
for the quadratic boundary treatment is shown for (a) b ¼ 0 and (d) b ¼ 1 and for the linear boundary treatment in (b) b ¼ 0 and (e) b ¼ 1. Panels (c), (f), (h)
and (i) compare the rms errors (solid lines) and maximum absolute errors (dash-dotted lines) for the quadratic and linear boundary treatments with
b ¼ 0; 0:1;1 and 10, respectively.
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4. Conclusion

In this paper we have presented a second-order accurate method for the solution of the Poisson equation, subject to Ro-
bin boundary conditions, on an irregular 3D domain embedded in a regular 3D mesh of grid points. The method extends the
well-known Shortley–Weller approach for the Dirichlet problem [25]. However, this extension needs to be addressed for 1D,
2D and 3D separately, since the Robin formulation is not additive, by contrast with the Dirichlet case. In addition, the qua-
dratic boundary treatment requires a quadratic discretisation of the normal derivative appearing in the Robin boundary
condition in order to maintain the OðD2Þ accuracy. The technique is derived using a Taylor series approach, but is shown
to agree with a simpler geometric derivation in the 2D case [15]. In the 2D case, the results can be shown to be consistent
with those in [12], derived by similar methods but for a variation on the boundary conditions treated here. In the 1D case,
where the boundary conditions are �bdw=dxþ w ¼ c for the left-hand and right-hand boundaries respectively, the error in-
volved with this quadratic treatment is uniformly OðD2Þ þ OðbD2Þ whereas a linear treatment of the boundary conditions
gives error of OðD2Þ þ OðbDÞ. Although this analysis is not directly relevant to the 2D and 3D cases, numerical experiments
indicate similar scaling of error for a range of test cases. Unlike some methods previously derived for the 2D problem
[4,21,3], the current technique does not give rise to a coefficient matrix that is an M-matrix. This is a significant deficiency
for iterative solution. However, the technique described here only involves nodes on the cube of side 2D centred on the
node of interest.
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Appendix A. The N-dimensional case

The N-dimensional problem ðN > 2Þ leads to the following system of equations:
I BG DBðI � AÞFN;M 2DBðI � AÞD
0 DI 0 �D2I

0 DKM;N �D2IM �D2KM;N

I �DðI � AÞ 0 �D2ðI � AÞ2

0
BBBB@

1
CCCCA

w

c

� �
¼

c
p1

p2

p3

0
BBB@

1
CCCA; ðA:1Þ
where M ¼ NðN � 1Þ=2. In (A.1) w is a vector of N elements, c is the vector of NðN þ 3Þ=2 constants in the Taylor expansion of
w; c is a vector of N elements, I is the N � N identity matrix, and A;B and D are N � N diagonal matrices where
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Arq ¼ ardrq; Brq ¼ brdrq and Drq ¼ nrrdrq: ðA:2Þ
IM is the identity matrix of order M and G is an N � N matrix with Grq ¼ nrq, where nrq is the component of the normal at the
rth jump in the qth direction.

FN;M is an N �M matrix, defined recursively by
FN;M ¼
FN�1;M

n1N 0 0 . . . 0
0 n2N 0 . . . 0

..

.
0 . .

.
0 ..

.

0 ..
. ..

. . .
.

0
0 0 0 . . . nN�1N

0
BBBBBBB@

1
CCCCCCCA

0 . . . 0ð Þ nN1 nN2 . . . . . . nNN�1ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ðA:3Þ
KM;N is an M � N matrix, with transpose KN;M defined recursively by
KN;M ¼
KN�1;M IN�1

0 . . . 0ð Þ 1 1 . . . . . . 1ð Þ

� �
: ðA:4Þ
Here p1 and p3 are vectors of length N, while p2 is a vector of length M:
p1 ¼

wi1 ;i2 ;...;iN � wi1�1;i2 ;...;iN

wi1 ;i2 ;...;iN
� wi1 ;i2�1;...;iN

..

.

wi1 ;i2 ;...;iN � wi1 ;i2 ;...;iN�1

0
BBBBB@

1
CCCCCA; p2 ¼

wi1 ;i2 ;...;iN � wi1�1;i2�1;i3 ;...;iN

wi1 ;i2 ;...;iN
� wi1�1;i2 ;i3�1;...;iN

..

.

wi1 ;i2 ;...;iN � wi1 ;i2 ;...;iN�1�1;iN�1

0
BBBBB@

1
CCCCCA;

p3 ¼ wi1 ;i2 ;...;iN

1
..
.

1

0
B@

1
CA: ðA:5Þ
Here i1; i2; . . . ; iN are the indices of the N dimensions, generalising the ði; j; kÞ notation used in the body of the paper. By row
operations following those given for the N ¼ 3 case in the body of the paper (A.1) can be reduced to the system of equations
I þ E 0 0 0
I �DðI � AÞð2I � AÞ 0 0

0 0 D2IM 0
I �DðI � AÞ 0 �D2ðI � AÞ2

0
BBB@

1
CCCA w

c

� �
¼

p6

p5

p4

p3

0
BBB@

1
CCCA; ðA:6Þ
where
Erq ¼
brð1þ 2drqð1� aqÞÞnrq

Dð1� aqÞð2� aqÞ
; r; q ¼ 1;2; . . . ;N; ðA:7Þ
and
p4 ¼

wi1�1;i2�1;i3 ;...;iN þ wi1 ;i2 ;i3 ;...;iN
� wi1�1;i2 ;i3 ;...;iN � wi1 ;i2�1;i3 ;...;iN

wi1�1;i2 ;i3�1;...;iN þ wi1 ;i2 ;i3 ;...;iN � wi1�1;i2 ;i3 ;...;iN � wi1 ;i2 ;i3�1;...;iN

..

.

wi1 ;i2 ;i3 ;...;iN�1�1;iN�1 þ wi1 ;i2 ;i3 ;...;iN�1 ;iN � wi1 ;i2 ;...;iN�1�1;iN � wi1 ;i2 ;...;iN�1 ;iN�1

0
BBBBB@

1
CCCCCA;

p5 ¼ ðI � AÞ2

wi1�1;i2 ;i3 ;...;iN

wi1 ;i2�1;i3 ;...;iN

..

.

wi1 ;i2 ;...;iN�1 ;iN�1

0
BBBBB@

1
CCCCCAþ Að2I � AÞp3;

p6 ¼ cþ 1
D

BðI � AÞð2Dp1 � FN;Mp4Þ þ Ep5: ðA:8Þ
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